منابع مشابه
Biflatness of certain semigroup algebras
In the present paper, we consider biflatness of certain classes of semigroupalgebras. Indeed, we give a necessary condition for a band semigroup algebra to bebiflat and show that this condition is not sufficient. Also, for a certain class of inversesemigroups S, we show that the biflatness of ell^{1}(S)^{primeprime} is equivalent to the biprojectivity of ell^{1}(S).
متن کاملHyperbolicity of Semigroup Algebras
Let A be a finite dimensional Q-algebra and Γ ⊂ A a Z-order. We classify those A with the property that Z 6 →֒U(Γ). We call this last property the hyperbolic property. We apply this in the case that A = KS a semigroup algebra with K = Q or K = Q( √ −d). In particular, when KS is semi-simple and has no nilpotent elements, we prove that S is an inverse semigroup which is the disjoint union of Higm...
متن کاملDifferential Algebras on Semigroup Algebras
This paper studies algebras of operators associated to a semigroup algebra. The ring of differential operators is shown to be anti-isomorphic to the symmetry algebra and both are described explicitly in terms of the semigroup. As an application, we produce a criterion to determine the equivalence of A-hypergeometric systems. Conditions under which associated algebras are finitely generated are ...
متن کاملModule cohomology group of inverse semigroup algebras
Let $S$ be an inverse semigroup and let $E$ be its subsemigroup of idempotents. In this paper we define the $n$-th module cohomology group of Banach algebras and show that the first module cohomology group $HH^1_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is zero, for every odd $ninmathbb{N}$. Next, for a Clifford semigroup $S$ we show that $HH^2_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is a Banach sp...
متن کامل2n-Weak module amenability of semigroup algebras
Let $S$ be an inverse semigroup with the set of idempotents $E$. We prove that the semigroup algebra $ell^{1}(S)$ is always $2n$-weakly module amenable as an $ell^{1}(E)$-module, for any $nin mathbb{N}$, where $E$ acts on $S$ trivially from the left and by multiplication from the right. Our proof is based on a common fixed point property for semigroups.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Open Mathematics
سال: 2020
ISSN: 2391-5455
DOI: 10.1515/math-2020-0023